The study of the mechanical properties of soft tissues is valuable to evaluate the progress of diseases such as tumours and treatment effects, to simulate medical surgeries, to understand the aging process and to evaluate the efficacy of cosmetic products. Yet again, the Texture Analyser has proven to be an invaluable tool in the measurement of such samples.
Recently researchers from the National University of Colombia have investigated the influence of indentation test factors on the mechanical response of skin.
This study proposes in vivo tests and design of experiments to determine the influence of experimental factors on the mechanical response of soft tissue. They used their TA.XT2i Texture Analyser to perform indentation measurements on forearm skin. Read more
The same researchers have also published an article regarding the incidence of temperature and indenter diameter on the mechanical response of skin during indentation tests. Read more
Mini Tensile Grips |
Meanwhile in the field of drug delivery through skin, researchers from Queen’s University Belfast have been investigating optical coherence tomography as a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. Microneedle arrays are used to pass drugs through the skin in a minimally invasive way. This study looked into the effect that needle geometry and force of application have on penetration characteristics of soluble polymer arrays into porcine skin. They used their TA.XTplus Texture Analyser to apply load to a spring-loaded piston for application of the microneedle arrays. The successful use of optical coherence tomography in this study could prove to be a key development for polymeric microneedle research, accelerating their commercial exploitation. Read more
In the same field, researchers from Loughborough University have been investigating the influence of array interspacing on the force required for successful microneedle skin penetration, using theoretical and practical approaches. The insertion behaviour of microneedle arrays depends on the mechanical properties of the skin and the microneedle geometry and distribution. In addressing this issue, this paper studies the mechanism of microneedle array insertion into the skin and provides a simple quantitative basis to relate the insertion force with distance between two microneedles. They used their TA.XTplus Texture Analyser to measure the force of insertion of arrays at two different speeds. Results from theoretical analysis and finite element modelling agreed well with experimental results. This showed that microneedle interspacing only began to affect insertion force at low interspacing. This model provides a framework for optimising microneedle devices, and should aid the development of suitable application methods and determination of force for reliable insertion into skin. Read more
To characterise the tactile properties of residual film of topical products applied to skin, scientists from Normandy University have been researching instrumental and sensory methodologies. Cosmetic and pharmaceutical topical products were selected based on their various texture, galenic form and composition. Key texture attributes such as firmness, stickiness, spreadability and the amount of residue were objectively evaluated using sensory analysis. Additionally, texture analysis (compression tests using a TA.XTplus Texture Analyser), rheology and tribology were carried out. The investigation was successful in showing how the tactile properties of topical gels and emulsions are studied using complementary tests in order to understand and improve the skinfeel of topical preparations. Read more
Those readers engaged in research in these activities may be interested in an article entitled ‘Using texture analysis to quantify the efficacy of skin care products’ by Stable Micro Systems. Addressing such issues as skin tightening and the use of the texture analyser for indentometric testing, this feature is available free of charge on request.
To request your PDF copy, visit our Resource Request page
Stable Micro Systems can help out with many areas of efficacy testing. To find out more, contact us today.
We can design and manufacture probes or fixtures for the TA.XTplus texture analyser that are bespoke to your sample and its specific measurement.
Once your measurement is performed, our expertise in its graphical interpretation is unparalleled. Not only can we develop the most suitable and accurate method for the testing of your sample, but we can also prepare analysis procedures that obtain the desired parameters from your curve and drop them into a spreadsheet or report designed around your requirements.
For more information on how to measure texture, please visit the Texture Analysis Properties section on our website.
The TA.XTplus texture analyser is part of a family of texture analysis instruments and equipment from Stable Micro Systems. An extensive portfolio of specialist attachments is available to measure and analyse the textural properties of a huge range of food products. Our technical experts can also custom design instrument fixtures according to individual specifications.
No-one understands texture analysis like we do!
To discuss your specific test requirements click here...
No comments:
Post a Comment