Stable Micro Systems

Stable Micro Systems website Products Applications Support Resources About us Contact

How to measure and analyse the texture of food, cosmetics, pharmaceuticals and adhesives.

Tuesday, 25 February 2020

The Textural Challenges of a Vegan Diet

Vegan pizzaVeganism is growing in popularity due to increased education about its environmental, health and ethical benefits. 

An Alpro report from 2018 (‘Plant-Based Profits with Alpro and BB Food Service’) stated that the UK plant based market at the time was worth £443m, having grown by £129m in three years. Due to this growth, vegan alternatives to products traditionally made with animal produce have swarmed the food market, and most use the new term ‘plant-based’ to describe a vegan product. It is now possible to buy a vegan version of almost every animal based product from chocolate fudge cake to crispy duck, and new companies are popping up that are dedicated solely to plant alternatives.


With this increased competition in the market, manufacturers have to try harder than ever to match the taste, texture and cost of the real thing. Consumers now expect vegan products to be almost indistinguishable from their animal counterpart. This presents a great challenge, particularly when it comes to texture.


HDP/KS10 Kramer Shear Cell
HDP/KS10 Kramer Shear Cell
Meat, for example, has a complex, fibrous texture that is difficult to imitate, but plant-based analogues can be put to the test quite simply by using Texture Analysis, to ensure that the results of physical testing match closely with tests performed on real meat. For example, pulled jackfruit is a popular topping for pizzas and tortillas, and is used in the place of pulled pork. Pulled pork is appealing because of its tenderness and melt-in-the-mouth texture. A reliable test of the tenderness of jackfruit is a bulk cutting technique. This product must be tested in bulk due to the large variation in sample geometries that result from the pulling process, and cutting is particularly useful here as it gives an indication of the force required to bite into the product, which represents its tenderness. Consequently, the Kramer shear cell or the Triple Cutting Ring System are the ideal testing rigs as they shear through a sample of variable configuration to create an averaging effect and provide a tenderness  profile.

Temperature Controlled Peltier Cabinet
Temperature Controlled Peltier Cabinet
Although margarine has been available for vegans to spread on their toast for decades, a hard, meltable butter that can be used in the same way is a more difficult to come by, and this can limit vegan cooking by making certain processes difficult (e.g. rubbing butter and flour together in the pastry manufacture). A butter’s hardness variation with temperature can be measured with the use of an indentation probe and a Peltier Cabinet. This provides a highly stable and accurate testing environment for controlled temperature tests, allowing temperatures from -20 to 80°C to be held. It is fixed directly to the base of the Texture Analyser on nylon insulating pillars that provide a thermal barrier from the instrument. A butter sample is placed in the cabinet and allowed to equilibrate to the correct temperature. An indentation test is then performed, usually with a cylinder or conical probe, to give an indication of the sample’s hardness. The temperature is adjusted, a fresh area of sample is moved beneath the probe, and the test is repeated.

Cheese Extensibility Rig
In a similar way, the properties of melted cheese are difficult to replicate using plant based ingredients. The purpose built Cheese Extensibility Rig is ideal for testing the stretchiness of a melted cheese sample. A vessel is filled with a known weight of cheese and cooked until the sample melts. A fork attachment is lifted through the cheese and the profile of the force-distance graph gives a lot of information about the stretchiness that a consumer would perceive while eating it.




Compression test of a gummy bear
Animal products are an important ingredient in most traditional confectionary, and not only because of their influence on taste. They also play an important role in the texture of some products. For example, gummy bears made without beef gelatine can have too ‘short’ a texture; they do not stretch when bitten. As gummy bears are moulded, they have consistent dimensions, and so can be tested repeatably using a compressive ‘hold distance until time’ test. A more plastic sample will show a force drop during this hold period, whereas a more elastic sample (and more favourable to the customer) will show almost no force drop. This corresponds to a springier sample.


Acoustic Envelope Detector
Milk chocolate has similar difficulties when milk is replaced with plant alternatives. They can play havoc with its mouthfeel and ‘bite’. Samples of milk chocolate can be tested in a three-point bend rig, and the force drop upon fracture gives an indication of the snap that will be felt in the mouth when the chocolate is bitten. The use of an Acoustic Envelope Detector will add another dimension to the test in the form of sound data.

Every time a vegan alternative to a more traditional product is introduced to the market, it is crucial that its texture is a close match. There are now so many excellent imitations available that manufacturers who neglect this aspect of their product will find it relegated to the reduced section in the supermarket. 

To find out more about any aspect of food Texture Analysis, talk to Stable Micro Systems today.



A world of food development possibilities with fruit
Our article ‘A world of food development possibilities with fruit’ presents a wide range of different texture measurements using the Texture Analyser on fruit ranging from dried, pureed, whole or processed. 

Request this article >







Watch the video below to see a summary of the types of testing possibilities that are available for the measurement of fruit and vegetable texture to provide quality control tools and ultimately, consumer satisfaction:


View fruit and vegetable video












For more information on how to measure texture, please visit the Texture Analysis Properties section on our website.

TA.XTplus texture analyser with bloom jarThe
 TA.XTplus texture analyser is part of a family of texture analysis instruments and equipment from Stable Micro Systems. An extensive portfolio of specialist attachments is available to measure and analyse the textural properties of a huge range of food products. Our technical experts can also custom design instrument fixtures according to individual specifications.

No-one understands texture analysis like we do!

To discuss your specific test requirements, click here...

 Fruit and Vegetable testing videoDownload a published article covering methods for the testing of fruit and vegetablesBrowse our range of fruit and vegetable testing solutions

No comments:

Post a Comment