Stable Micro Systems

Stable Micro Systems website Products Applications Support Resources About us Contact

How to measure and analyse the texture of food, cosmetics, pharmaceuticals and adhesives.

Tuesday 21 July 2020

The Packaging Research Revolution: Biodegradable polymer foams and rubbers

A major focus of current research in both industrial and academic institutions is the development of suitable alternatives to single use plastics. This has been driven by the worldwide push for a cleaner environment, and both the manufacture and disposal of plastics are harmful in separate ways.

Packaging is a large contributor to plastic production, particularly the single use sector. One method of reducing this production is to replace traditional polymers with biodegradable alternatives. A drawback of biodegradable plastics is their reduced strength and toughness. Mechanical properties are an important consideration when it comes to packaging, so their control is a crucial stage in the R&D process. Consequently, Stable Micro Systems feature heavily in publications from this field. The following are a selection of recent journal papers, specifically those focussing on polymer foams and rubbers.

Researchers from Ohio State University have been investigating the optimal mechanical properties of biodegradable natural rubber-toughened PHBV bioplastics intended for food packaging applications. The incorporation of natural rubber into PHBV through melt blending improves its flexibility and toughness but sacrifices tensile strength, due to low rubber modulus and insufficient compatibility between the two materials. These unbalanced mechanical properties restrict the use of this blend in packaging applications.

The objective of this study was to optimise the mechanical properties of PHBV/natural rubber blends by using peroxide and coagent. They used their TA.XT2 Texture Analyser to measure the strength of seals in a tensile test. Optimal mechanical performance of natural rubber toughened PHBV bioplastic was obtained using a combination of testing techniques. Read more

Researchers from the Federal University of Rio Grande do Sul have been investigating biodegradable starch-based foams incorporated with grape stalks for food packaging. As part of the enormous drive to reduce the use of disposable plastics in packaging, this study looks into the use of naturally-sourced packaging options. They used their TA.XT2i Texture Analyser to perform flexural tests of the foams according to ASTM D 790-03.

Foams completely biodegraded after 7 weeks, demonstrating that for the experimental conditions used, the interactions between the starch and grape stalks did not generate recalcitrant compounds or structural alterations that would impair foam degradation. Furthermore, the foams including grape stalks presented good properties in the applicability test, showing a promising application in the storage of foods with low moisture content. Read more

Researchers from the Federal University of Jequitinhonha and Mucuri Valleys have been investigating biodegradable trays based on cassava starch blended with agroindustrial residues. Biodegradable materials are an alternative to traditional synthetic polymer-based packaging materials. When they are discarded into the environment, they are easily degraded into simpler compounds that can be metabolised by bacteria, yeasts and fungi. Among biodegradable materials, materials derived from renewable resources (e.g., starch) have received increasing attention because they combine environmental and functional benefits.

This study investigates how the fibrous agroindustrial residue concentration affects the properties of the biodegradable trays and compares these characteristics with the features of expanded polystyrene trays. They used their TA.XTplus Texture Analyser to perform tensile tests on tray samples. The study found that fibrous agroindustrial residues can potentially be employed to produce biodegradable trays, especially the combination of sugarcane bagasse and cornhusk. Read more

For help putting your packaging to the test, contact Stable Micro Systems today.



For more information on how to measure texture, please visit the Texture Analysis Properties section on our website.

TA.XTplus texture analyser with bloom jarThe TA.XTplus texture analyser is part of a family of texture analysis instruments and equipment from Stable Micro Systems. An extensive portfolio of specialist attachments is available to measure and analyse the textural properties of a huge range of food products. Our technical experts can also custom design instrument fixtures according to individual specifications.


No-one understands texture analysis like we do!

To discuss your specific test requirements click here...


Watch our video about testing of materialsPutting Packaging to the TestMaterials and Packaging Testing

No comments:

Post a Comment